ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид m/p·180°, где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники. |
Страница: 1 [Всего задач: 5]
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и
g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали. Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?
Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке