Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?

Вниз   Решение


Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R.
Найдите угол между касательными к окружности, проведёнными из точки S, если отношение стороны квадрата к радиусу окружности равно  24 : 13.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 76480  (#1)

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

Прислать комментарий     Решение

Задача 76480  (#2)

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.

Прислать комментарий     Решение

Задача 76485  (#3)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

Прислать комментарий     Решение

Задача 76486  (#4)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Прислать комментарий     Решение


Задача 76487  (#5)

Тема:   [ Уравнения с модулями ]
Сложность: 3
Классы: 10,11

Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .