ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Легко проверить равенства

log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;     log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.

В каких еще случаях можно выносить логарифм за скобку?

Вниз   Решение


Выпуклый пятиугольник ABCDE таков, что  AB || CD,  BC || AD,  AC || DECEBC.  Докажите, что EC – биссектриса угла BED.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 57624  (#12.041)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
а)  sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ = (p2 - r2 - 4rR)/2R2.
б)  4R2cos$ \alpha$cos$ \beta$cos$ \gamma$ = p2 - (2R + r)2.
Прислать комментарий     Решение


Задача 57625  (#12.042)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9

α, β и γ - углы треугольника ABC. Докажите, что
ab cos$ \gamma$ + bc cos$ \alpha$ + ca cos$ \beta$ = (a2 + b2 + c2)/2.
Прислать комментарий     Решение


Задача 57626  (#12.043)

Тема:   [ Синусы и косинусы углов треугольника ]
Сложность: 3+
Классы: 9

Пусть α, β и γ - углы треугольника ABC. Докажите, что
$ {\frac{\cos^2(\alpha /2)}{a}}$ + $ {\frac{\cos^2(\beta /2)}{b}}$ + $ {\frac{\cos^2(\gamma /2)}{c}}$ = $ {\frac{p}{4Rr}}$.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .