ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Для многочленов  f(x) = x² + ax + b  и  g(y) = y² + py + q  с корнями x1, x2 и y1, y2 соответственно, выразите через a, b, p, q их результант

R(f, g) = (x1y1)(x1y2)(x2y1)(x2y2).

Вниз   Решение


Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 64689  (#7.1)

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 6,7

Автор: Акопян Э.

Используя три различных знака арифметических действий и знак равенства, получите верное равенство из записи сегодняшней даты: 16032014.

Прислать комментарий     Решение

Задача 64690  (#7.2)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7

Автор: Кноп К.А.

В шеренге стоят 2014 человек, и одного из них зовут Артур. Каждый из стоящих в шеренге либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Каждый, кроме Артура, сказал: "Между мной и Артуром стоят ровно два лжеца". Сколько лжецов в этой шеренге, если известно, что Артур – рыцарь?

Прислать комментарий     Решение

Задача 64691  (#7.3)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Прислать комментарий     Решение

Задача 64692  (#7.4)

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

Прислать комментарий     Решение

Задача 64693  (#7.5)

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Впишите в пять кружков натуральные числа так, чтобы выполнялись два условия:
  - если два кружка соединены линией, то стоящие в них числа должны отличаться ровно в два или ровно в четыре раза;
  - если два кружка не соединены линией, то отношение стоящих в них чисел не должно быть равно ни 2, ни 4.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .