ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет
  а) 2012,
  б) 2013 плоскостей симметрии?
  в) Каков будет ответ в пункте б), если плоскости симметрии заменить на оси симметрии?

Вниз   Решение


Разрежьте фигуру с вырезанным квадратиком на две одинаковые части, из которых можно составить вторую фигуру. Части разрешается и поворачивать, и переворачивать.

ВверхВниз   Решение


Число a – корень уравнения  х11 + х7 + х3 = 1.  При каких натуральных значениях n выполняется равенство  a4 + a3 = an + 1?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 18]      



Задача 64374

Тема:   [ Ребусы ]
Сложность: 4-
Классы: 6,7

Автор: Шноль Д.Э.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные.

Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

Прислать комментарий     Решение

Задача 64375

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 6,7

В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.

Прислать комментарий     Решение

Задача 64384

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Разложение на множители ]
Сложность: 4-
Классы: 6,7

Автор: Фольклор

В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .