ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Прямая AB касается его вписанной окружности в точке C′, а вневписанной, касающейся стороны BC, – в точке C′a. Аналогично определяются точки C′b, C′c, A′, A′a, A′b, A′c, B′, B′a, B′b, B′c. Рассмотрим длины 12 отрезков – высот треугольников A′B′C′, A′aB′aC′a, A′bB′bC′b, A′cB′cC′c. а) Какое наибольшее число различных может быть среди них? б) Найдите все возможные количества различных длин. В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший. Натуральное число a увеличили на 1, а его квадрат увеличился на 1001. Чему равно a? |
Страница: << 1 2 3 [Всего задач: 14]
Диагонали равнобокой трапеции АВСD с боковой стороной АВ пересекаются в точке Р. Верно ли, что центр окружности, описанной около трапеции, лежит на окружности, описанной около треугольника ABP?
Корни уравнения x² + ax + 1 = b – целые, отличные от нуля числа. Докажите, что число a² + b² является составным.
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а.
Докажите, что среди чисел вида 19991999...19990...0 найдётся хотя бы одно, которое делится на 2001.
Страница: << 1 2 3 [Всего задач: 14]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке