|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.) В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC. |
Страница: << 1 2 [Всего задач: 8]
Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0.
Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности, треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω.
Даны натуральные числа a и b, причём a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?
Страница: << 1 2 [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|