Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан треугольник со сторонами 12, 15, 18. Проведена окружность, касающаяся обеих меньших сторон и имеющая центр на большой стороне. Найдите отрезки, на которые центр окружности делит большую сторону треугольника.

Вниз   Решение


Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
По какой траектории движется середина этого отрезка?

ВверхВниз   Решение


Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65493  (#6.1)

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Формула корней ]
Сложность: 3+
Классы: 5,6,7

Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$
Прислать комментарий     Решение


Задача 65494  (#6.2)

Темы:   [ Текстовые задачи (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 5,6,7

Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?

Прислать комментарий     Решение

Задача 65495  (#6.3)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 5,6,7

Покажите, как разрезать фигуру, изображённую на рисунке слева, на две равные части и сложить из этих частей фигуру, изображённую на рисунке справа.

Прислать комментарий     Решение

Задача 65496  (#6.4)

Темы:   [ Текстовые задачи (прочее) ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 5,6,7

На полке стоят, плотно прилегая друг к другу, две книги по 250 листов в каждой (см. рисунок). Каждая из обложек в 10 раз толще бумаги, на которой напечатаны обе книги. В каждую книгу вложена закладка. Расстояние между закладками втрое меньше общей толщины двух книг. Между какими листами лежит закладка во второй книге, если в первой книге она лежит посередине?

Прислать комментарий     Решение

Задача 65497  (#6.5)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На школьный Новогодний праздник в городе Лжерыцарске пришёл 301 ученик. Из них некоторые всегда говорят правду, а остальные – всегда лгут. Каждый из 200 школьников сказал: "Если я выйду из зала, то среди оставшихся учеников большинство будет лжецами". Каждый из остальных школьников заявил: "Если я выйду из зала, то среди оставшихся учеников лжецов будет вдвое больше, чем говорящих правду". Сколько лжецов было на празднике?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .