ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 67173

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9

Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
Прислать комментарий     Решение


Задача 67170

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7,8

Фигура «скрипач» бьёт клетку слева по стороне (локтем) и справа вверху по диагонали (смычком), если он правша, и, наоборот, правую клетку по стороне и левую верхнюю по диагонали, если левша (все скрипачи сидят лицом к нам). Посадите как можно больше «скрипачей» в «оркестр» 8×8 клеток, чтобы они не били друг друга. (Вы можете использовать любое количество как правшей, так и левшей.)

так бьёт правша
а так левша
Прислать комментарий     Решение

Задача 67174

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

Два квадрата расположены как на рисунке, отмеченные отрезки равны. Докажите, что треугольник BDG равнобедренный.

Прислать комментарий     Решение

Задача 67175

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 6,7,8,9

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
Прислать комментарий     Решение


Задача 67176

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 5,6,7,8,9

У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие.

Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .