Страница: 1 [Всего задач: 4]
Задача
78568
(#1)
|
|
Сложность: 4 Классы: 8,9,10
|
Дана последовательность
...,
a-n,...,
a-1,
a0,
a1,...,
an,...
бесконечная в обе стороны, причём каждый её член равен
суммы
двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть
бесконечное число пар равных между собой чисел. (Пояснение: два члена, про
которые известно, что они равны, не обязательно соседние).
Задача
78569
(#2)
|
|
Сложность: 4- Классы: 8,9
|
Дан прямоугольный биллиард размером 26×1965 (сторона длины 1965 направлена слева направо, а сторона длины 26 – сверху вниз; лузы расположены в вершинах прямоугольника). Из нижней левой лузы под углом 45° к бортам выпускается шар. Доказать, что после нескольких отражений от бортов он упадет в верхнюю левую лузу. (Угол падения равен углу отражения.)
Задача
78570
(#3)
|
|
Сложность: 5- Классы: 8,9,10
|
Два неравных картонных диска разделены на 1965 равных секторов. На каждом из
дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший
диск наложен на больший, так что их центры совпадают, а секторы целиком лежат
один против другого. Меньший диск поворачивают на всевозможные углы, кратные
части окружности, оставляя больший диск неподвижным. Доказать,
что по крайней мере при 60 положениях на дисках совпадут не более 20
красных секторов.
Задача
78571
(#4)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома
со стороной, равной a. Расстояние между улицами – 3a, а расстояние между двумя соседними домами – 2a (см. рис.).
Одна улица патрулируется полицейскими, которые движутся на расстоянии 9a друг от друга со скоростью v. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?
Страница: 1 [Всего задач: 4]