Страница: 1 [Всего задач: 4]
Задача
79505
(#1)
|
|
Сложность: 3+ Классы: 7,8,9
|
В марте 1987 года учитель решил провести 11 занятий математического кружка.
Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте
найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.
Задача
79506
(#2)
|
|
Сложность: 4- Классы: 7,8,9
|
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно
выбрать два числа, не являющихся взаимно простыми.
Задача
79507
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
По поляне, имеющей форму равностороннего треугольника со стороной 100 м, бегает
волк. Охотник убивает волка, если стреляет в него с расстояния не более 30 м.
Доказать, что охотник может убить волка, как бы быстро тот ни бегал.
Задача
79508
(#4)
|
|
Сложность: 4 Классы: 7,8,9
|
Пусть
AB — основание трапеции
ABCD. Доказать, что если
AC +
BC =
AD +
BD, то
трапеция
ABCD — равнобокая.
Страница: 1 [Всего задач: 4]