Страница:
<< 1 2 [Всего задач: 7]
Задача
97804
(#М819)
|
|
Сложность: 4 Классы: 8,9,10
|
В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и
найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение N! способами.
Задача
97796
(#М820)
|
|
Сложность: 4+ Классы: 8,9
|
Правильный 4k-угольник разрезан на параллелограммы. Доказать, что среди них не менее k прямоугольников. Найти их общую площадь, если длина стороны 4k-угольника равна a.
Страница:
<< 1 2 [Всего задач: 7]