|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть точка $M$ – середина катета $AB$ прямоугольного треугольника $ABC$ с прямым углом $A$. На медиане $AN$ треугольника $AMC$ отмечена точка $D$, так что углы $ACD$ и $BCM$ равны. Докажите, что угол $DBC$ также равен этим углам. |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|