ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13. Дано трёхзначное число, у которого первая и последняя цифра одинаковые. Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.
Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.
Даны точки A(- 2;2), B(- 2; - 2) и C(6;6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.
У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать? Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. |
Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 7526]
На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?
На продолжении стороны KM треугольника KLM за точку K взята точка K1, а на стороне KL взята точка L1, длина отрезка K1M равна 116% длины стороны KM, а длина отрезка KL1 равна 75% длины стороны KL. Сколько процентов площади треугольника KLM составляет площадь треугольника K1L1M?
Даны точки A(–1, 5) и B(3, –7). Найдите расстояние от начала координат до середины отрезка AB.
Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный.
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке