ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.

   Решение

Задачи

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 7526]      



Задача 102393

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?

Прислать комментарий     Решение

Задача 102394

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

На продолжении стороны KM треугольника KLM за точку K взята точка K1, а на стороне KL взята точка L1, длина отрезка K1M равна 116% длины стороны KM, а длина отрезка KL1 равна 75% длины стороны KL. Сколько процентов площади треугольника KLM составляет площадь треугольника K1L1M?

Прислать комментарий     Решение

Задача 102704

Темы:   [ Метод координат на плоскости ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Даны точки  A(–1, 5)  и  B(3, –7).  Найдите расстояние от начала координат до середины отрезка AB.

Прислать комментарий     Решение

Задача 102705

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Даны точки  A(3, 5),  B(–6, –2)  и  C(0, –6).  Докажите, что треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 102710

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3-
Классы: 8,9

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.

Прислать комментарий     Решение


Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .