Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

Вниз   Решение


В записи *1*2*4*8*16*32*64 = 27 вместо знаков ''*'' поставьте знаки ''+'' или ''-'' так, чтобы равенство стало верным.

ВверхВниз   Решение


Автор: Ботин Д.А.

На Нью-Васюковской валютной бирже за 11 тугриков дают 14 динаров, за 22 рупии – 21 динар, за 10 рупий – 3 талера, а за 5 крон – 2 талера. Сколько тугриков можно выменять за 13 крон?

ВверхВниз   Решение


В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?

ВверхВниз   Решение


Тангенсы углов треугольника – целые числа. Чему они могут быть равны?

ВверхВниз   Решение


Как одним прямолинейным разрезом рассечь два лежащих на сковороде квадратных блина на две равные части каждый?

ВверхВниз   Решение


В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

ВверхВниз   Решение


Решите ребус:  БАО×БА×Б = 2002.

ВверхВниз   Решение


Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника. Докажите неравенство  a³ + b³ + 3abc > c³.

ВверхВниз   Решение


Существует ли такое шестизначное число A, что среди чисел  A, 2A, ..., 500000A  нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?

ВверхВниз   Решение


Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 103800

Тема:   [ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7

В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?

Прислать комментарий     Решение


Задача 103801

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8,9

Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася.
На сколько процентов больше Алика собрал грибов Вася?

Прислать комментарий     Решение

Задача 103802

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 2+
Классы: 7,8

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Прислать комментарий     Решение

Задача 103804

Темы:   [ Разные задачи на разрезания ]
[ Пятиугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

Автор: Ботин Д.А.

Можно ли разрезать на четыре остроугольных треугольника
  а) какой-нибудь выпуклый пятиугольник,
  б) правильный пятиугольник.

Прислать комментарий     Решение

Задача 103809

Темы:   [ Правило произведения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7

Сколькими способами можно прочитать в таблице слово
  а)  КРОНА,
  б)  КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .