Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
б) Из новой фигуры уберите 3 спички так, чтобы осталось только 3 квадрата.

Вниз   Решение


Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

ВверхВниз   Решение


По кругу выписаны в некотором порядке все натуральные числа от 1 до N , N2 . При этом для любой пары соседних чисел имеется хотя бы одна цифра, встречающаяся в десятичной записи каждого из них. Найдите наименьшее возможное значение N .

ВверхВниз   Решение


Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

ВверхВниз   Решение


Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

ВверхВниз   Решение


Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

ВверхВниз   Решение


Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.

ВверхВниз   Решение


31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?

ВверхВниз   Решение


Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

ВверхВниз   Решение


На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

ВверхВниз   Решение


На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

ВверхВниз   Решение


Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).

Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.

ВверхВниз   Решение


Число A положительно, В отрицательно, а C равно нулю. Каков знак числа AB+ AC+BC?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 202]      



Задача 103946

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2-
Классы: 6,7

Число A положительно, В отрицательно, а C равно нулю. Каков знак числа AB+ AC+BC?
Прислать комментарий     Решение


Задача 88246

Тема:   [ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Прислать комментарий     Решение

Задача 88301

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Объем параллелепипеда ]
Сложность: 2-
Классы: 5,6,7

Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд?
Прислать комментарий     Решение


Задача 103971

Темы:   [ Объединение, пересечение и разность множеств ]
[ Формула включения-исключения ]
Сложность: 2-
Классы: 5,6,7

В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?
Прислать комментарий     Решение


Задача 104080

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2-
Классы: 5,6,7

Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .