ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 644]      



Задача 103949

Темы:   [ Подсчет двумя способами ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Игорь закрасил в квадрате 6×6 несколько клеток. После этого оказалось, что во всех квадратиках 2×2 одинаковое число закрашенных клеток и во всех полосках 1×3 одинаковое число закрашенных клеток. Докажите, что старательный Игорь закрасил все клетки.

Прислать комментарий     Решение

Задача 103954

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

Несколько гномов, навьючив свою поклажу на пони, отправились в дальний путь. Их заметили тролли, которые насчитали в караване 36 ног и 15 голов. Сколько было гномов, и сколько пони?

Прислать комментарий     Решение

Задача 103956

Темы:   [ Задачи на движение ]
[ Процессы и операции ]
Сложность: 2+
Классы: 5,6,7,8

Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

Прислать комментарий     Решение

Задача 103981

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Петя сложил несколько чисел, среди которых было N чётных и M нечётных. Вы можете спросить у Пети про одно из чисел N или M, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?

Прислать комментарий     Решение

Задача 104015

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8,9

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .