ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 188]      



Задача 103838

Тема:   [ Раскраски ]
Сложность: 3
Классы: 7,8,9

Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение


Задача 103957

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 7,8

Дан угольник, у которого есть ровно один угол в 19°, а про остальные углы ничего не известно. Можно ли с его помощью отложить угол в 75°?

Прислать комментарий     Решение

Задача 103967

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Задача 103969

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8,9

а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.
Прислать комментарий     Решение


Задача 104003

Темы:   [ Разные задачи на разрезания ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Снежная Королева предпочитает идеальные фигуры, поэтому она так любит квадраты. Она дала Каю крест (см. рисунок справа), чтобы тот разделил его на равные части и собрал из них квадрат. Как это можно сделать?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .