ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 30302  (#1)

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 6,7

Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.

Прислать комментарий     Решение

Задача 104025  (#2)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8,9

Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?

Прислать комментарий     Решение

Задача 104026  (#3)

Темы:   [ Четность и нечетность ]
[ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7,8,9

а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?
б) Тот же вопрос, если вырезали две клетки a1 и h8.
в) Тот же вопрос, если вырезали клетки a1 и h1.

Прислать комментарий     Решение

Задача 104027  (#4)

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8,9

В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Прислать комментарий     Решение


Задача 104028  (#5)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .