Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Вниз   Решение


Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.

ВверхВниз   Решение


Автор: Смирнов А.

Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется хорошей, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?

ВверхВниз   Решение


Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Известно, что для любого вещественного x существует такое вещественное y, что   f(y) = f(x) + y.  Найдите наибольшее возможное значение a.

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 105118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Тетраэдр (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Индукция в геометрии ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 10,11

Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .