ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел. |
Страница: << 1 2 3 >> [Всего задач: 12]
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Незнайка думает, что только равносторонний треугольник можно разрезать на три равных треугольника. Прав ли он?
Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, — красные, а двадцать пятая — чёрная. Какого цвета двадцать шестая выложенная карточка?
Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100o. Может ли так быть?
Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке