ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой. Решение |
Страница: << 1 2 [Всего задач: 7]
Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.
Рассматривается произвольный многоугольник (возможно, невыпуклый). (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|