ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что существует бесконечно много таких составных n, что  3n–1 – 2n–1 кратно n.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 107795

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 8,9,10

Доказать, что существует бесконечно много таких составных n, что  3n–1 – 2n–1 кратно n.

Прислать комментарий     Решение

Задача 107796

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 6-
Классы: 10,11

Существует ли такой многогранник и точка вне него, что из этой точки не видно ни одной из его вершин?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .