ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD. Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз? Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья? В равнобедренном треугольнике ABC (AB = BC) на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что BM || AC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.
Незнайка написал на доске несколько различных натуральных чисел и поделил (в уме) сумму этих чисел на их произведение. После этого Незнайка стёр самое маленькое число и поделил (опять в уме) сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число Незнайка стёр?
Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за три взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
Найдите все такие пары квадратных трёхчленов x² + ax + b, x² + cx + d, что a и b – корни второго трёхчлена, c и d – корни первого.
В равнобедренном треугольнике ABC (AB = BC) на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что BM || AC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке