ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Куб со стороной n ( n Квадратный трёхчлен f(x) разрешается заменить на один из
трёхчленов Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Существуют ли действительные числа a , b и c такие, что при
всех действительных x и y выполняется неравенство
Решите уравнение {(x + 1)³} = x³. На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди
пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода. В треугольнике ABC (AB > BC) K и M – середины сторон AB и AC, O – точка пересечения биссектрис. Пусть P – точка пересечения прямых KM и CO, а точка Q такова, что QP ⊥ KM и QM || BO. Докажите, что QO ⊥ AC. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]
В треугольнике ABC (AB > BC) K и M – середины сторон AB и AC, O – точка пересечения биссектрис. Пусть P – точка пересечения прямых KM и CO, а точка Q такова, что QP ⊥ KM и QM || BO. Докажите, что QO ⊥ AC.
Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке