Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 123]
|
|
Сложность: 3 Классы: 7,8,9
|
Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.
|
|
Сложность: 3+ Классы: 8,9,10
|
Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?
|
|
Сложность: 3+ Классы: 7,8,9
|
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
1) Каждая команда сыграла с каждой ровно по одному разу.
2) Каждая команда чередовала свои игры – то на плохой стороне, то
на хорошей стороне двора.
а) Удастся ли это сделать, если в турнире принимают участие
10 команд?
б) Можно ли при этом составить расписание так, чтобы
каждый день каждая команда играла ровно одну игру?
|
|
Сложность: 3+ Классы: 7,8,9
|
См. задачу 73546 а).
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 123]