ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.

Вниз   Решение


Докажите, что сумма расстояний от точки, взятой произвольно внутри правильного треугольника, до его сторон постоянна (и равна высоте треугольника).

ВверхВниз   Решение


Найти наименьшее значение выражения  x + 1/4x  при положительных значениях x.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 108965

Темы:   [ Задачи на движение ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8

Моторная лодка в 9 часов отправилась вверх по течению реки, и в момент её отправления с лодки был брошен в реку мяч. В 9:15 лодка повернула и поплыла по течению. В котором часу лодка догонит мяч, если известно, что её собственная скорость оставалась неизменной?

Прислать комментарий     Решение

Задача 108999

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 7,8,9

Найти скорость и длину поезда, если известно, что он проходит мимо неподвижного наблюдателя в течение 7 секунд и затратил 25 секунд, чтобы проехать вдоль платформы длиной в 378 м.

Прислать комментарий     Решение

Задача 109181

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

Найти четыре последовательных числа, произведение которых равно 1680.

Прислать комментарий     Решение

Задача 109146

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 8,9,10

Найти наименьшее значение выражения  x + 1/4x  при положительных значениях x.

Прислать комментарий     Решение

Задача 109151

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9,10

Доказать, что

   

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .