ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждый голосующий на выборах вносит в избирательный бюллетень фамилии n кандидатов. На избирательном участке находится n+1 урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе (n+1) -го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата. Решение |
Страница: << 1 2 [Всего задач: 8]
В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что CD = CB1.
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|