ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Длины сторон многоугольника равны  a1, a2, ..., an.  Квадратный трёхчлен  f(x) таков, что  f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то  f(A) = f(B).

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110062  (#01.4.10.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Длины сторон многоугольника равны  a1, a2, ..., an.  Квадратный трёхчлен  f(x) таков, что  f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то  f(A) = f(B).

Прислать комментарий     Решение

Задача 108221  (#01.4.10.2)

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Касающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 5-
Классы: 9,10,11

В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.
Прислать комментарий     Решение


Задача 110064  (#01.4.10.3)

Темы:   [ Уравнения в целых числах ]
[ Раскраски ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию  2000(a + b) = c,  то они либо все одного цвета, либо трёх разных цветов.

Прислать комментарий     Решение

Задача 110065  (#01.4.10.4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Прислать комментарий     Решение

Задача 110066  (#01.4.10.5)

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10

Автор: Храбров А.

Даны целые числа a, b и c,  c ≠ b.  Известно, что квадратные трёхчлены  ax² + bx + c  и  (c – b)x² + (c – a)x + (a + b)  имеют общий корень (не обязательно целый). Докажите, что  a + b + 2c  делится на 3.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .