ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 55]
Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y.
Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.
Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что px = y³ + 1.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 55] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|