Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан выпуклый четырёхугольник ABCD , и проведены биссектрисы lA , lB , lC , lD внешних углов этого четырёхугольника. Прямые lA и lB пересекаются в точке K , прямые lB и lC – в точке L , прямые lC и lD – в точке M , прямые lD и lA – в точке N . Докажите, что если окружности, описанные около треугольников ABK и CDM , касаются внешним образом, то и окружности, описанные около треугольников BCL и DAN , касаются внешним образом.

Вниз   Решение


Автор: Карасев Р.

На плоскости дано бесконечное множество точек S , при этом в любом квадрате 1×1 лежит конечное число точек из множества S . Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняются неравенства:

|XA|,|XB| 0,999|AB|.

ВверхВниз   Решение


При каких натуральных n для любых чисел α , β , γ , являющихся величинами углов остроугольного треугольника, справедливо неравенство

sin nα + sin nβ + sin nγ<0?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



Задача 110151  (#04.4.11.7)

Темы:   [ Неравенства для углов треугольника ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
Сложность: 6+
Классы: 10,11

При каких натуральных n для любых чисел α , β , γ , являющихся величинами углов остроугольного треугольника, справедливо неравенство

sin nα + sin nβ + sin nγ<0?

Прислать комментарий     Решение

Задача 110152  (#04.4.11.8)

Темы:   [ Тетраэдр (прочее) ]
[ Параллельность прямых и плоскостей ]
[ Симметрия относительно плоскости ]
[ Движение помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5+
Классы: 10,11

Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .