Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Храбров А.

Даны целые числа a, b и c,  c ≠ b.  Известно, что квадратные трёхчлены  ax² + bx + c  и  (c – b)x² + (c – a)x + (a + b)  имеют общий корень (не обязательно целый). Докажите, что  a + b + 2c  делится на 3.

Вниз   Решение


В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

ВверхВниз   Решение


Вот несколько примеров, когда сумма квадратов k последовательных натуральных чисел равна сумме квадратов k – 1 следующих натуральных чисел:

32 + 42 = 52,

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442,

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652.

Найдите общую формулу, охватывающую все такие случаи.

ВверхВниз   Решение


В клетчатом прямоугольнике 49×69 отмечены все 50· 70 вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

ВверхВниз   Решение


Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

ВверхВниз   Решение


В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110179  (#05.4.10.1)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Синусы и косинусы углов треугольника ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника.
Найдите наибольший из шести углов этих треугольников.

Прислать комментарий     Решение

Задача 110180  (#05.4.10.2)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Докажите, что     для  x > 0  и натурального n.

Прислать комментарий     Решение

Задача 110187  (#05.4.10.3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

Прислать комментарий     Решение

Задача 110181  (#05.4.10.4)

Темы:   [ Раскраски ]
[ Задачи с ограничениями ]
[ Ориентированные графы ]
[ Перестановки и подстановки (прочее) ]
[ Отношение порядка ]
Сложность: 5-

Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Прислать комментарий     Решение

Задача 110182  (#05.4.10.5)

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .