|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи К граням тетраэдра восстановлены перпендикуляры в их точках пересечения медиан. а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре? б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз? Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC . |
Страница: 1 2 >> [Всего задач: 8]
Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого.
В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?
Известно, что
На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?
Страница: 1 2 >> [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|