ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

Вниз   Решение


Алгоритм приближенного вычисления $ \sqrt[3]{a}$. Последовательность {an} определяется условиями:

a0 = a > 0,        an + 1 = $\displaystyle {\textstyle\frac{1}{3}}$$\displaystyle \left(\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right.$2an + $\displaystyle {\frac{a}{a_{n}^2}}$$\displaystyle \left.\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right)$        (n $\displaystyle \geqslant$ 0).

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = $ \sqrt[3]{a}$.

ВверхВниз   Решение


Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

ВверхВниз   Решение


Пять братьев. Один из пяти братьев испек маме пирог. Андрей сказал: «Это Витя или Толя». Витя сказал: «Это сделал не я и не Юра». Толя сказал: «Вы оба шутите». Дима сказал: «Нет, один из них сказал правду, а другой — нет». Юра сказал: «Нет, Дима, ты не прав». Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог?

ВверхВниз   Решение


Германн и Чекалинский разложили на столе 13 различных карт. Каждая карта может лежать в одном из двух положений: рубашкой вверх или рубашкой вниз. Игроки должны по очереди переворачивать по одной карте. Проигрывает тот игрок, после хода которого повторится какая-то из предыдущих ситуаций (включая изначальную). Первый ход сделал Чекалинский. Кто сможет выиграть независимо от того, как будет играть соперник?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


На заводе имени матроса Железняка изготавливают прямоугольники длиной 2 м и шириной 1 м. Длину отмеряет рабочий Иванов, а ширину, независимо от Иванова, отмеряет рабочий Петров. Средняя ошибка у обоих нулевая, но Иванов допускает стандартную ошибку измерения (стандартное отклонение длины) 3 мм, а Петров допускает стандартную ошибку 2 мм.
  а) Найдите математическое ожидание площади получившегося прямоугольника.
  б) Найдите стандартное отклонение площади получившегося прямоугольника в квадратных сантиметрах.

ВверхВниз   Решение


Докажите, что для любых положительных чисел x и y справедливо неравенство  

ВверхВниз   Решение


Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.

ВверхВниз   Решение


На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
 a) число x²?   б) число xy?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 111357

Темы:   [ Числовые таблицы и их свойства ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?

Прислать комментарий     Решение

Задача 111358

Темы:   [ Тождественные преобразования ]
[ Процессы и операции ]
Сложность: 3-
Классы: 8,9

На бумажке записаны 1 и некоторое нецелое число x. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
число x²?

Прислать комментарий     Решение

Задача 64594

Темы:   [ Шестиугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В выпуклом шестиугольнике ABCDEF противоположные стороны попарно параллельны  (AB || DE,  BC || EF,  CD || FA),  а также  AB = DE.
Докажите, что  BC = EF  и  CD = FA.

Прислать комментарий     Решение

Задача 111352

Темы:   [ Обыкновенные дроби ]
[ Гомотетия (прочее) ]
Сложность: 3
Классы: 10,11

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

Прислать комментарий     Решение

Задача 111353

Темы:   [ Тождественные преобразования ]
[ Процессы и операции ]
Сложность: 3
Классы: 10,11

На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
 a) число x²?   б) число xy?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .