Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 45]
|
|
Сложность: 3 Классы: 10,11
|
Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение AC·BC будет наименьшим?
В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.
Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?
Середина одной из сторон треугольника и основания высот, опущенных на две другие стороны, образуют равносторонний треугольник.
Верно ли, что исходный треугольник тоже равносторонний?
На стороне CD ромба ABCD нашлась такая точка K, что AD = BK. Пусть F – точка пересечения диагонали BD и серединного перпендикуляра к стороне BC. Докажите, что точки A, F и K лежат на одной прямой.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 45]