ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что  MN || AB.  На стороне AC отмечена точка K так, что  CK = AM.  Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116487  (#10.1)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

Прислать комментарий     Решение

Задача 116488  (#10.2)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Аналитический метод в геометрии ]
Сложность: 3-
Классы: 9,10,11

Прямая пересекает график функции  y = x²  в точках с абсциссами x1 и x2, а ось абсцисс – в точке с абсциссой x3. Докажите, что    .

Прислать комментарий     Решение

Задача 116489  (#10.3)

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 7,8,9

На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что  MN || AB.  На стороне AC отмечена точка K так, что  CK = AM.  Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.

Прислать комментарий     Решение

Задача 116490  (#10.4)

Темы:   [ Логика и теория множеств (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

Прислать комментарий     Решение

Задача 116491  (#10.5)

Темы:   [ Геометрические неравенства (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что  KR > MQ.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .