Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

7 шоколадок дороже чем 8 пачек печенья. Что дороже – 8 шоколадок или 9 пачек печенья?

Вниз   Решение


Найдётся ли среди чисел вида 1...1 число, которое делится на 57?

ВверхВниз   Решение


Автор: Фольклор

На рисунке изображен параллелограмм и отмечена точка P пересечения его диагоналей. Проведите через P прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.

ВверхВниз   Решение


Автор: Фольклор

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

ВверхВниз   Решение


По кругу расставили 1000 чисел, среди которых нет нулей, и раскрасили их поочередно в белый и чёрный цвета. Оказалось, что каждое чёрное число равно сумме двух соседних с ним белых чисел, а каждое белое число равно произведению двух соседних с ним чёрных чисел. Чему может быть равна сумма всех расставленных чисел?

ВверхВниз   Решение


В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

ВверхВниз   Решение


Кащей заточил в темницу толпу пленников и сказал им: «Завтра вам предстоит испытание. Я выберу нескольких из вас (кого захочу, но минимум троих), посажу за круглый стол в каком-то порядке (в каком пожелаю) и каждому на лоб наклею бумажку с нарисованной на ней фигуркой. Фигурки могут повторяться, но никакие две разные фигурки не будут наклеены на одинаковое число людей. Каждый посмотрит на фигурки остальных, а своей не увидит. Подавать друг другу какие-то знаки запрещено. После этого я наклейки сниму и велю всех развести по отдельным камерам. Там каждый должен будет на листе бумаги нарисовать фигурку. Если хоть один нарисует такую, какая была у него на лбу, всех отпущу. Иначе останетесь здесь навечно».

Как пленникам договориться действовать, чтобы спастись?

ВверхВниз   Решение


Имеется 36 борцов. У каждого некоторый уровень силы, и более сильный всегда побеждает более слабого, а равные по силе сводят поединок вничью. Всегда ли этих борцов можно разбить на пары так, что все победители в парах будут не слабее, чем все те, кто сделал ничью или проиграл, а все сделавшие ничью будут не слабее всех тех, кто проиграл?

ВверхВниз   Решение


Наибольший общий делитель натуральных чисел a, b будем обозначать  (a, b).  Пусть натуральное число n таково, что
(n, n + 1) < (n, n + 2) < ... < (n, n + 35).  Докажите, что  (n, n + 35) < (n, n + 36).

ВверхВниз   Решение


Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116540  (#9.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неопределено ]
Сложность: 2+
Классы: 8,9

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Прислать комментарий     Решение

Задача 116541  (#9.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 2
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.

Прислать комментарий     Решение

Задача 116542  (#9.3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

Прислать комментарий     Решение

Задача 116543  (#9.4)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Даны положительные числа x, y, z. Докажите неравенство   

Прислать комментарий     Решение

Задача 116544  (#9.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 4)  будет целым.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .