ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 7 шоколадок дороже чем 8 пачек печенья. Что дороже – 8 шоколадок или 9 пачек печенья? Найдётся ли среди чисел вида 1...1 число, которое делится на 57? На рисунке изображен параллелограмм и отмечена точка P пересечения его диагоналей. Проведите через P прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб. Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.) По кругу расставили 1000 чисел, среди которых нет нулей, и раскрасили их поочередно в белый и чёрный цвета. Оказалось, что каждое чёрное число равно сумме двух соседних с ним белых чисел, а каждое белое число равно произведению двух соседних с ним чёрных чисел. Чему может быть равна сумма всех расставленных чисел? В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой? Кащей заточил в темницу толпу пленников и сказал им: «Завтра вам предстоит испытание. Я выберу нескольких из вас (кого захочу, но минимум троих), посажу за круглый стол в каком-то порядке (в каком пожелаю) и каждому на лоб наклею бумажку с нарисованной на ней фигуркой. Фигурки могут повторяться, но никакие две разные фигурки не будут наклеены на одинаковое число людей. Каждый посмотрит на фигурки остальных, а своей не увидит. Подавать друг другу какие-то знаки запрещено. После этого я наклейки сниму и велю всех развести по отдельным камерам. Там каждый должен будет на листе бумаги нарисовать фигурку. Если хоть один нарисует такую, какая была у него на лбу, всех отпущу. Иначе останетесь здесь навечно». Как пленникам договориться действовать, чтобы спастись? Имеется 36 борцов. У каждого некоторый уровень силы, и более сильный всегда побеждает более слабого, а равные по силе сводят поединок вничью. Всегда ли этих борцов можно разбить на пары так, что все победители в парах будут не слабее, чем все те, кто сделал ничью или проиграл, а все сделавшие ничью будут не слабее всех тех, кто проиграл? Наибольший общий делитель натуральных чисел a, b будем обозначать (a, b). Пусть натуральное число n таково, что Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей. |
Страница: 1 2 >> [Всего задач: 8]
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.
Даны положительные числа x, y, z. Докажите неравенство
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 4) будет целым.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке