Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Белоснежка вырезала из батиста большой квадрат и положила его в сундук. Пришел Первый Гном, достал квадрат, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Второй Гном, достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Третий Гном. И он достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. То же самое проделали все остальные гномы. Сколько квадратов лежало в сундуке после того, как ушел Седьмой Гном?

Вниз   Решение


В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

ВверхВниз   Решение


В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.

ВверхВниз   Решение


Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

ВверхВниз   Решение


Автор: Фольклор

Известно, что  tg α + tg β = p,  ctg α + ctg β = q.  Найдите   tg(α + β).

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 116985  (#10.1.1)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Известно, что  tg α + tg β = p,  ctg α + ctg β = q.  Найдите   tg(α + β).

Прислать комментарий     Решение

Задача 116986  (#10.1.2)

Темы:   [ Векторы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Прислать комментарий     Решение

Задача 116987  (#10.1.3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

Прислать комментарий     Решение

Задача 116993  (#10.3.3)

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Задача 116988  (#10.2.1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан многочлен P(x) с целыми коэффициентами. Известно, что  Р(1) = 2013,  Р(2013) = 1,  P(k) = k,  где k – некоторое целое число. Найдите k.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .