ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.

   Решение

Задачи

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 7526]      



Задача 108538

Темы:   [ Метод координат на плоскости ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что прямые  y = k1x + l1  и  y = k2x + l2  параллельны тогда и только тогда, когда   k1 = k2  и  l1l2.

Прислать комментарий     Решение

Задача 108548

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

Прислать комментарий     Решение


Задача 21997

Темы:   [ Принцип Дирихле (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 6,7,8

На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.

Прислать комментарий     Решение

Задача 30312

Темы:   [ Четность и нечетность ]
[ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?

Прислать комментарий     Решение

Задача 30367

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Прислать комментарий     Решение

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .