ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Червяк ползет по столбу, начав путь от его основания. Каждый день он проползает вверх на 5 см, а за каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его высота равна 75 см?

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 4556]      



Задача 30261

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Аня, Ваня и Саня сели в автобус, не имея медных монет, однако сумели заплатить за проезд, потратив по пять копеек каждый. Как им это удалось?

Прислать комментарий     Решение


Задача 30264

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Червяк ползет по столбу, начав путь от его основания. Каждый день он проползает вверх на 5 см, а за каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его высота равна 75 см?

Прислать комментарий     Решение


Задача 30265

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

В январе некоторого года было четыре пятницы и четыре понедельника. Каким днем недели было 20-е число этого месяца?

Прислать комментарий     Решение


Задача 30267

Темы:   [ Математическая логика (прочее) ]
[ Отношение порядка ]
Сложность: 2
Классы: 6,7

Из числа 1234512345123451234512345 вычеркните 10 цифр так, чтобы оставшееся число было максимально возможным.

Прислать комментарий     Решение


Задача 30278

Тема:   [ Двоичная система счисления ]
Сложность: 2
Классы: 6,7,8

Как разложить по семи кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно было бы выдать, не открывая кошельков?

Прислать комментарий     Решение


Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .