ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 4556]      



Задача 31278

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 6,7,8

Доказать, что  1·2·3 + 2·3·4 + ... + 98·99·100 ≠ 19891988.

Прислать комментарий     Решение

Задача 31361

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2
Классы: 6,7,8

Квадрат раскрашен в два цвета. Можно любой прямоугольник перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.

Прислать комментарий     Решение


Задача 60281

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 2
Классы: 7,8,9

Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.
Прислать комментарий     Решение


Задача 60309

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 60906

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 7,8

Коля Васин задумал число: 1, 2 или 3. Вы задаете ему только один вопрос, на который он может ответить `` да'', ``нет'' или ``не знаю''. Сможете ли вы угадать число, задав всего лишь один вопрос?

Прислать комментарий     Решение

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .