ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]
Докажите, что n³ – n делится на 24 при любом нечётном n.
а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3.
Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3.
a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441.
a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|