ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 3. Алгоритм Евклида и основная теорема арифметики
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что существует бесконечно много простых чисел. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 173]
Докажите, что существует бесконечно много простых чисел.
Найдите все простые числа, которые отличаются на 17.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Пусть n > 2. Докажите, что между n и n! есть по крайней мере одно простое число.
Найдите все простые числа p и q, для которых выполняется равенство p² – 2q² = 1.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 173] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|