Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Вниз   Решение


Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

ВверхВниз   Решение


В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне треугольника лежит меньше половины периметра квадрата.

ВверхВниз   Решение


Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?

ВверхВниз   Решение


Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 30438  (#006)

Тема:   [ Игры-шутки ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 25 и 36. За ход разрешается дописать еще одно натуральное число - разность любых двух имеющихся на доске чисел, если она еще не встречалась. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30439  (#007)

Тема:   [ Игры-шутки ]
Сложность: 3
Классы: 7,8,9

Дана клетчатая доска размерами

а) 9 × 10;     б) 10 × 12;     в) 9 × 11.

За ход разрешается вычеркнуть любую горизонталь или любую вертикаль, если в ней к моменту хода есть хотя бы одна невычеркнутая клетка. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30440  (#008)

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 6,7,8

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30441  (#009)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8,9

Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30442  (#010)

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 7,8

Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .