Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 559]
Задача
74569
(#020)
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),
а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Задача
30453
(#021)
|
|
Сложность: 3 Классы: 7,8
|
Двое по очереди ставят крестики и нолики в клетки доски 9 × 9. Начинающий ставит крестики, его соперник - нолики. В конце подсчитывается, сколько имеется строчек и столбцов, в которых крестиков больше, чем ноликов - это очки, набранные первым игроком. Количество строчек и столбцов, где ноликов больше - очки второго. Тот из игроков, кто наберет больше очков, побеждает.
Задача
30454
(#022)
|
|
Сложность: 3 Классы: 7,8
|
Ладья стоит на поле
a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле
h8.
Задача
30455
(#023)
|
|
Сложность: 3+ Классы: 7,8,9
|
Король стоит на поле
a1. За один ход его можно передвинуть на одно поле вправо, или на одно поле вверх, или на одно поле по диагонали "вправо-вверх". Выигрывает тот, кто поставит короля на поле
h8.
Задача
30456
(#024)
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеются две кучки конфет: в одной - 20, в другой
- 21. За ход нужно съесть одну из кучек, а вторую разделить на
две не обязательно равных кучки. Проигрывает тот, кто не может
сделать ход.
Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 559]