|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны. Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками. а) Может ли квадрат натурального числа оканчиваться на 2? б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.
Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
а) Может ли квадрат натурального числа оканчиваться на 2? б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|