|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC взята такая точка O, что ∠COA = ∠B + 60°, ∠COB = ∠A + 60°, AOB = ∠C + 60°. Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны. Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней. Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр. |
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 559]
Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.
Предпоследняя цифра квадрата натурального числа – нечётная. Докажите, что его последняя цифра – 6.
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.
Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр.
Докажите, что любое натуральное число сравнимо с суммой своих цифр по модулю
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|