ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть a, b, c, d – различные цифры. Докажите, что  cdcdcdcd  не делится на  aabb.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 559]      



Задача 30628  (#042)

Тема:   [ Признаки делимости на 11 ]
Сложность: 3
Классы: 7,8,9

Докажите, что  a1a2...an = anan–1 + ... + (–1)n (mod 11).

Прислать комментарий     Решение

Задача 30629  (#043)

Тема:   [ Признаки делимости на 11 ]
Сложность: 3
Классы: 7,8

Докажите, что число 11...11 (2n единиц) – составное.

Прислать комментарий     Решение

Задача 30630  (#044)

Тема:   [ Признаки делимости на 11 ]
Сложность: 3
Классы: 7,8

Докажите, что число  a1a2...anan...a2a1  – составное.

Прислать комментарий     Решение

Задача 30631  (#045)

Тема:   [ Признаки делимости на 11 ]
Сложность: 3+
Классы: 7,8,9

Пусть a, b, c, d – различные цифры. Докажите, что  cdcdcdcd  не делится на  aabb.

Прислать комментарий     Решение

Задача 30632  (#046)

Темы:   [ Признаки делимости на 11 ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .