ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11. Решение |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 559]
Докажите, что a1a2...an = an – an–1 + ... + (–1)n (mod 11).
Докажите, что число 11...11 (2n единиц) – составное.
Докажите, что число a1a2...anan...a2a1 – составное.
Пусть a, b, c, d – различные цифры. Докажите, что cdcdcdcd не делится на aabb.
A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 559] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|